MERITS
Preparation & characterization of sodium sulfide hydrates for application in thermochemical storage systems

Mark Roelands, Katja Kruit, Ruud Cuypers, Henk Oversloot, Ardjan de Jong, Hans van der Meer, Willem Duvalois, Laurens van Vliet, Christophe Hoegaerts

SHC - Beijing, 2014.10.14
Contents

0. Background
1. Preparation of recrystallized Na$_2$S hydrate salts
2. Cycling experiments
3. Characterization
 Chemical - Physical
4. Preparation of stabilized Na$_2$S + cellulose
5. Characterization
 Physical - Mechanical
6. Summary & Recommendations
0. Background: Thermochemical heat storage system

- **System level**
 - Supply & demand simulations
 - Dimensioning heat & power
 - Open/closed system?
 - Vacuum/atmospheric?

- **Component level**
 - HX implementation
 - HX corrosion prevention
 - Evap/Cond implementation
 - Reservoir implementation

- **Material level**
 - TCM type
 - Composite TCM development
 - Cycling stability

1. AJ de Jong et al, SHC 2013
2. C. Hoegaerts et al, SHC 2014
3. This presentation
0. Background Cycle depiction

\[\text{Na}_2\text{S.nH}_2\text{O} \]

(1) 40°C hydration

(2) 80°C dehydration

\[\text{Na}_2\text{S.5H}_2\text{O} (s) \Leftrightarrow \text{Na}_2\text{S.} \frac{1}{2}\text{H}_2\text{O} (s) + 4.5 \text{H}_2\text{O} (g) \]

storage capacity = 2.6 GJ/m³

De Boer et al 2003
1. Preparation of salt hydrate crystals

- $\text{Na}_2\text{S}.9\text{H}_2\text{O}$ elevated temp \Rightarrow 20°C
- $\text{Na}_2\text{S}.5\text{H}_2\text{O}$ elevated temp \Rightarrow >50°C
- Penta-hydrate crystals: more elongated / angular than nona-hydrate crystals

Penta-hydrate: yellow mother liquor and white crystals (settled)
2. Cycling test – set-up and method

- **Aim**: to cycle between Na$_2$S penta-hydrate and hemi-hydrate
- **Cycling period**: 2 hours 80°C + 2 hours 40°C
- **Temperature evaporator / condenser**: 7°C
- **Duration**: 1 week = 42 cycles
- **Control by computer + monitoring of temperatures**
2. Cycling test - observations

\[\text{Na}_2\text{S} \cdot 5\text{H}_2\text{O (s)} \Leftrightarrow \text{Na}_2\text{S} \cdot \frac{1}{2}\text{H}_2\text{O (s)} + 4.5 \text{H}_2\text{O (g)} \]

\(\text{Na}_2\text{S} \) becomes yellow during dehydration.

Power failure: "Over-hydration" of \(\text{Na}_2\text{S} \) (melting)
3. Characterization
 a. Chemical stability

1. **H₂S formation**: \(\text{Na}_2\text{S} + 2 \text{H}_2\text{O} \rightarrow 2 \text{NaOH} + \text{H}_2\text{S} \)
 - Detection of dissolved H₂S in water phase
 - HACH LANGE Kuvettentest LCK653 detection method
 - All reproducible experiments: \(\text{H}_2\text{S} < \text{detection limit!} \)
 - Detection limit = 0.1 mg H₂S/L
 - Verification/: no detection with GC method

2. **SO₃²⁻ formation**: \(2 \text{Na}_2\text{S} + 3 \text{O}_2 \rightarrow 2 \text{Na}_2\text{SO}_3 \)
 - Not expected, but observed 0-15 wt% with pXRD
 - Correlation with sample age & purging with air (O₂)
 - Handling advice: N₂ blanket
3. Characterisation of salt hydrates

Before cycling – SEM images

- Surface covered with pores
- Surface covered by layer of other material, probably dried up mother liquor, forming 9H₂O crystals
3. Characterisation of salt hydrates

After cycling 42 times, removal at 40°C - SEM

- Sponge-like porous structure

0.9\(\text{H}_2\text{O}\)

0.5\(\text{H}_2\text{O}\)
3. Characterisation of salt hydrates

After cycling 42 times, removal at 80°C - SEM

- Sponge-like porous structure

9H$_2$O

5H$_2$O
3. Characterisation

After cycling – powder diffraction

<table>
<thead>
<tr>
<th>Sample</th>
<th>Na$_2$S.9H$_2$O</th>
<th>Na$_2$S.5H$_2$O</th>
<th>Na$_2$S.2H$_2$O</th>
<th>Na$_2$S.0H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$S.9H$_2$O before cycling</td>
<td>100</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na$_2$S.9H2O 42 cycles; $T{\text{out}}$ = 40°C</td>
<td>25</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na$_2$S.9H2O 42 cycles $T{\text{out}}$ 80 °C</td>
<td>3</td>
<td>36</td>
<td>~10</td>
<td>42</td>
</tr>
<tr>
<td>Na$_2$S.5H$_2$O before cycling</td>
<td>5</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na$_2$S.5H2O 42 cycles; $T{\text{out}}$ 40 °C,</td>
<td>11</td>
<td>89</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Na$_2$S.5H2O 42 cycles $T{\text{out}}$ 80 °C</td>
<td>4</td>
<td>50</td>
<td>~10</td>
<td>22</td>
</tr>
</tbody>
</table>

Cycling with two hour time periods: conversion not complete
NB Accuracy pXRD hampered by inhomogeneity of initial samples
4. Preparation of cellulose stabilized salt hydrates

Suspension-crystallization: Water added, with stirring

Melt solidification: No water added, no stirring

- **Result**: free flowing composite crystals ~mm size
- **Melt solidification** appears evenly distributed salt / cellulose
5. Characterisation of cellulose / salt composites

After cycling 42 times, removal at 40°C – SEM

- Sponge-like porous structure

9H₂O with cellulose

5H₂O with cellulose
5. Characterisation

After cycling – powder diffraction

<table>
<thead>
<tr>
<th>Sample</th>
<th>Na$_2$S.9H$_2$O</th>
<th>Na$_2$S.5H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$S.9H$_2$O before cycling</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Na$_2$S.9H$_2$O + cellulose before cycling</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Na$_2$S.9H2O 42 cycles; $T{out} = 40^\circ$C</td>
<td>25</td>
<td>71</td>
</tr>
<tr>
<td>Na$_2$S.9H$_2$O + cellulose 42 cycles</td>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>Na$_2$S.5H$_2$O before cycling</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>Na$_2$S.5H$_2$O + cellulose before cycling</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td>Na$_2$S.5H2O 42 cycles; $T{out} 40^\circ$C</td>
<td>11</td>
<td>89</td>
</tr>
<tr>
<td>Na$_2$S.5H$_2$O + cellulose 42 cycles</td>
<td>38</td>
<td>62</td>
</tr>
</tbody>
</table>

- Presence of cellulose does not influence (chemical) composition
5. Bed volume change during cycling

- Bed height measured with camera stills
- Bed volume change up to 10-15% during cycling
- Cold stage: increase in bed height
- Hot stage: decrease in bed height.
5. Mechanical bed stability test

- Salt bed compressed by weight in closed cylinder
- Cylinders in oven
- Temperature gradually increased (10°C every hour)
- Height decreases with increasing temperature
Summary (1)

Preparation:
• Methods available for:
 - well defined crystals of Na$_2$S pentahydrate and nonahydrate
 - composite of salt with cellulose (stabilizer)
• Temperature cycling of samples at reduced pressure to mimic operation in a thermochemical system.
• Samples characterized by microscopic imaging, SEM and pXRD

Chemical stability:
• Na$_2$S hydrate salt reacts with O$_2$ from air forming Na$_2$SO$_3$
• During cycling no detectable quantity of H$_2$S in set-up
Summary (2)

Physical stability

- pXRD:
 - samples at 40°C mostly 5\(\text{H}_2\text{O}\) (>60%) and 9\(\text{H}_2\text{O}\),
 - samples at 80°C partially 0\(\text{H}_2\text{O} / 2\text{H}_2\text{O}\) (‘\(\frac{1}{2}\text{H}_2\text{O}\)’) and 5\(\text{H}_2\text{O}\)
- SEM images: morphology change from well-defined angular crystal to highly porous, sponge-like shape
- Material goes through stage with both pentahydrate and solution present
 - in presence of excess water also nonahydrate forms
- Cellulose stabilized crystals similar behaviour

Mechanical stability

- Salt bed 10-15% volume change during cycling.
- Mechanical salt bed strength test:
 height decreases with increasing temperature
Recommendations

› Do not expose Na$_2$S hydrates to air, use nitrogen blanket.
› During cycling monitor conversion rate of penta-hydrate to hemi-hydrate
› When going through stage were salt and solution are present follow change of cellulose/salt composite material
› To assess effect of porous sponge like crystal shape on mass transfer of water vapour during (de)hydration
The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement No ENER/FP7/295983 (MERITS)