Coatings for Heat Storage Reactors with Hygroscopic Salts (MERITS project)

SHC conference, Beijing, October 14, 2014

A.J. de Jong, R.S.A. Stevens, C.H.A. Rentrop, C.L.G. Hoegaerts
Contents

› Seasonal Heat Storage
› MERITS Programme
› Thermochemical heat storage system
› Corrosion protection
› Testing of coated samples
› Conclusions
Seasonal Heat Storage for the build environment

- Business case
 - Yearly heat demand of single family dwelling versus solar energy supply
 - Typical house in NL → Store 10GJ for cold season
 - Hot water storage 90°C → 50m³
 - Thermochemical storage → 5m³ (compact)
The international MERITS consortium is working on a new solution for improved use of renewable sources for heating and cooling and hot water applications in individual dwellings (new & existing) for all three European climate zones.

The aim is to build a prototype of a fully functioning compact rechargeable thermal battery that would fit in for example a cellar or underground a garden including business models and market strategies to foster market take-up before 2020.
Thermochemical heat storage (TCS) system

System level

- Balancing supply & demand
- Dimensioning heat & power
- Open/closed system?
- Vacuum/atmospheric?

Component level

- HX implementation
- **HX corrosion prevention**
- Evap/Cond implementation
- Reservoir implementation

Material level

- TCM type
- Composite TCM development
- Cycling stability
- Q/V, vapor & heat transport

1 AJ de Jong et al, SHC 2013
2 This presentation
3 M. Roelands et al, SHC 2014
Corrosion protection of heat exchanger (HX)

Preferred HX for MERITS
- Cu tubes, Al fin plate → Low cost, mass production, good heat conductivity

Challenges
- Protect Cu and Al in corrosive Na$_2$S environment (coating)
- Complex geometry & sharp fin plates → Difficult for coating application(!)
- Non-destructive coating testing for all HX used within MERITS system
Coating testing

› Testing methods
 › Visual inspection
 › Electric Impedance Spectroscopy → Pinholes
 › Exposure to Na$_2$S, vacuum, T-changes

› Samples (Epoxy coating applied by E-coating)
 › Flat samples
 › Complete Heat Exchanger
EIS flat samples – Setup

Electrolyte (1M H$_2$SO$_4$)

Electrode

Cylinder

Coating

Sample

Pinhole (defect)
EIS flat samples – Method

- **No defects**

 ![Diagram of EIS flat samples with no defects]

 - Equivalent network
 - Bode plot

- **Pinhole present**

 ![Diagram of EIS flat samples with pinhole present]

 - $R_{ct} = \text{charge transfer resistance}$
 - $\propto \frac{1}{\text{defect area}}$

 - Equivalent network
 - Bode plot
EIS flat samples – Results

1. Straight line → no defects
2. Height scales with area → no stray capacity
3. Since R_{ct} is related to the defect area we can use the artificial defect with known area to calibrate the measurement
4. If the impedance spectrum is monitored for 24h the defect develops (R_{ct} decreases)

| f [Hz] | $|Z|$ [Ohm] |
|----------|-------------|
| 10 | 10 |
| 100 | 100 |
| 1000 | 1000 |
| 10000 | 10000 |

No defects

Artificial defect (puncture)
EIS flat sample – Results for edges

› No perfect Capacitor behaviour → Are edges more prone to defects?
› Edges covered with tape → Reduced defect area!
› Microscopy → Bubbles, pinholes near edges
EIS of complete heat exchanger

- Immersion of only Cu tubing → Acceptable
- Immersion until first fin → Defect area \(\geq 10\text{mm}^2 \)
- Immersion 10cm → Defect area \(\geq 30\text{mm}^2 \)
- Conclusion → heat exchanger coating contains pinholes
Conclusions

› Conclusions impedance testing
 › Valuable electric impedance setup realized for coating testing!

› Conclusions HX coating
 › Surface of flat Al-samples contains no defects
 › Edges of flat Al-samples are prone to defects
 › Heat exchanger shows defects on fins
Thank you.

www.merits.eu

christophe.hoegaerts@tno.nl

The research leading to these results has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under grant agreement No ENER/FP7/295983 (MERITS)